Forest management impact on biodiversity in Central European beech forests – It is the landscape level that matters

Steffi Heinrichs, Christian Ammer, Peter Schall & many scientists of the Biodiversity Exploratories

Silviculture & Forest Ecology of the Temperate Zones, Georg-August-Universität Göttingen

Background

How can we manage (not manage) forest landscapes for biodiversity <u>and</u> other services?

 Forests as "Multi-talents" fulfilling many functions and services for human wellbeing

Article Published: 13 April 2020

Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome

Ingmar R. Staude 🗁, Donald M. Waller, [...]Lander Baeten

 Nature Ecology & Evolution 4, 802–808 (2020)
 Cite this article

 2176 Accesses
 15 Citations
 262 Altmetric
 Metrics

Article Published: 30 October 2019

Arthropod decline in grasslands and forests is associated with landscape-level drivers

Sebastian Seibold ^{CD}, Martin M. Gossner, Nadja K. Simons, Nico Blüthgen, Jörg Müller, Didem Ambarlı, Christian Ammer, Jürgen Bauhus, Markus Fischer, Jan C. Habel, Karl Eduard Linsenmair, Thomas Nauss, Caterina Penone, Daniel Prati, Peter Schall, Ernst-Detlef Schulze, Juliane Vogt, Stephan Wöllauer & Wolfgang W. Weisser

 Nature
 574, 671–674 (2019)
 Cite this article

 26k
 Accesses
 205
 Citations
 2469
 Altmetric
 Metrics

European beech forests represent the potential natural vegetation across large parts of central Europe.

Background

It is assumed that a small-scale forest management creating uneven-aged forest stands in combination with natural forest development (= no management on at least 5 % of the forest area) in managed forest landscapes will affect biodiversity positively.

"following MacArthur & MacArthur (1961)"

Questions I

Are there biodiversity differences between forest management systems? Do stand and landscape-level diversity respond differently?

3 Forest management systems of European beech

Even-aged forests (EA)

17 plots (3 thickets, 3 polewoods, 4 immature timber, 4 mature timber, 3 thicket with shelterwoods)

Uneven-aged forests (UEA)

13 plots near the localities Langula und Keula

Now unmanaged (UNM (up to ca. 50 yrs) **13 plots** in the National Park Hainich

DFG-Biodiversity Exploratories

43 1ha plots

14 sampled Taxa from bacteria to vertebrates

Taxon	Sampling	Species number	
		all	Forest
			specialists
Bats	acoustic	13	8
Birds	acoustic-visual	39	16
Spiders	trap (ground)	96	70
Harvestmen	trap(ground)	16	
Beetles	trap (canopy & understorey & ground)	799	394
Hymenopterans	trap (canopy & understorey)	65	
Lacewings	trap (canopy & understorey)	37	
True bugs	trap (canopy & understorey & ground)	120	29
Vascular plants	relevé (herb layer)	119	54
Bryophytes	relevé (bark & deadwood & ground)	64	
Lichens	relevé (bark & deadwood & ground)	37	
Fungi			
deadwood	coarse woody debris	271	
ectomycorrhiza	soil DNA	823	
Bacteria	soil RNA (genera level)	1153	

Data are published: Schall, P., Gossner, M.M., Heinrichs, S., et al. (2017) Data from: The impact J. Appl. Ecol. Dryad Digital Repository. https://doi.org/10.5061/dryad.4236t.

Studied diversity levels

 α -diversity Species richness per 1 ha plot = stand level diversity

β-diversity Baselga (2012) Compositional difference between plots (Jaccard multiple-site dissimilarity)

γ-diversity ⁰D, ¹D, ²D _{chao et al.} (2012) Accumulated species richness = landscape level diversity

Species accumulation...

...to quantify landscape level diversity.

Gamma of beetles

Result summary

Species accumulation curves

Results - Gamma ⁰D, ¹D, ²D

- In 6 out of 15 groups with higher gamma diversity in the evenaged system
- Rare and common species were affected similarly
- Lacewings and Bacteria (DNA) with higher gamma diversity in the uneven-aged system

Results - Gamma ⁰D, ¹D, ²D

Forests specialists

Bats Birds Spiders Gamma diversity (number equivalents) oS = 8 eS = 8 oS = 16 eS = 16 oS = 70 16-60-8. eS = 101 14 7 50-6 12-40-5. 10-₹ ₹ 30-4 8-**Beetles** True bugs Vascular plants oS = 394 eS = 492 oS = 29 eS = 32 oS = 54 eS = 61 25-50-300 Ţ 20 40-250· Ī 15 30-200-Ŧ 10-20-150 0[.]D ^{2}D ^{2}D ^{2}D ^{1}D ⁰D ^{1}D ⁰D D Hill number • even-aged uneven-aged unmanaged

 Higher gamma diversity in EA also for forest specialists.

Results - diversity levels

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Results - diversity levels

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

But there is some complementarity between communities of management systems.

Is it "perfect" complementarity?

Questions II

How should a manged forest landscape look like to support biodiversity?

Even aged forest (Share ?) + No management (Share ?) + Uneven-aged forest (Share ?)

Is a mixture of uneven-aged forests and unmanaged forests effective for biodiversity conservation?

3 Forest management systems of European beech mixed in different proportions

Photos: Steffi Heinrichs; except uneven-aged forest by Bo & Lill/pixelio.de

Organismic groups and Multidiversity

Results

Multidiversity in %

• Current compositon of management systems

Forest specialists showed a similar pattern (minimum in UEA)!

Schall, Heirnichs et al. (2020): Can multi-taxa diversity in European beech forest landscapes be increased by combining different management systems? J Appl Ecol 57: 1363-1375.

Example Birds

Schall, Heinrichs et al. (2020): J Appl Ecol 57: 1363-1375; Ehbrecht et al. (2019): Forest Ecol Manag 432: 860-867. Schall, Heinrichs et al. (2021): J Appl Ecol 58: 1817-1826.

Example Birds

Between stand heterogneity within the EA system drives species diversity.

This heterogneity is supplemented by structures of the unmanaged forests.

Schall, Heinrichs et al. (2020): J Appl Ecol 57: 1363-1375; Ehbrecht et al. (2019): Forest Ecol Manag 432: 860-867. Schall, Heinrichs et al. (2021): J Appl Ecol 58: 1817-1826.

Deadwood amount in the Biodiversity Exploratories

Gamma diversity of

Specialized taxa benefit from conditions in forest reserves – Deadwood dependent food chain

Schall, Heinrichs et al. (2020): J Appl Ecol 57: 1363-1375; Ehbrecht et al. (2019): Forest Ecol Manag 432: 860-867. Schall, Heinrichs et al. (2021): J Appl Ecol 58: 1817-1826.

Example Trophic levels

The response of primary producers cascades up to higher trophic levels – Herb layer dependent food chain

Schall, Heinrichs et al. (2021): Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests J Appl Ecol 58: 1817-1826.

- Forest management per se in not negative for biodiversity in temperate beech forests.
- The complete focus on a small-scale heterogeneity within stands creating uneven-aged forests is not beneficial for the conservation of biodiversity in managed forest landscapes.
- On the other hand, managment systems that create a heterogneity in environmental conditions at a larger scale promote biodiversity.
- In such a landscape, the integration of unmanaged forests as a specialized habitat is important for specialized groups.
- It's importance will presumably increase with time since management abandonment.

Diversity creates diversity!

Thank You!

Thanks to the Biodiversity

Funded by

Forschungsgemeinschaft

DFG

Deutsche

Photo: Steffi Heinrichs